Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the inferior colliculus of the pallid bat.

نویسندگان

  • Zoltan M Fuzessery
  • Marlin D Richardson
  • Michael S Coburn
چکیده

This study describes mechanisms that underlie neuronal selectivity for the direction and rate of frequency-modulated sweeps in the central nucleus of the inferior colliculus (ICC) of the pallid bat (Antrozous pallidus). This ICC contains a high percentage of neurons (66%) that respond selectively to the downward sweep direction of the bat's echolocation pulse. Some (19%) are specialists that respond only to downward sweeps. Most neurons (83%) are also tuned to sweep rates. A two-tone inhibition paradigm was used to describe inhibitory mechanisms that shape selectivity for sweep direction and rate. Two different mechanisms can create similar rate tuning. The first is an early on-best frequency inhibition that shapes duration tuning, which in turn determines rate tuning. In most neurons that are not duration tuned, a delayed high-frequency inhibition creates rate tuning. These neurons respond to fast sweep rates, but are inhibited as rate slows, and delayed inhibition overlaps excitation. In these neurons, starting a downward sweep within the excitatory tuning curve eliminates rate tuning. However, if rate tuning is shaped by duration tuning, this manipulation has no effect. Selectivity for the downward sweep direction is created by an early low-frequency inhibition that prevents responses to upward sweeps. In addition to this asymmetry in arrival times of low- and high-frequency inhibitions, the bandwidth of the low-frequency sideband was broader. Bandwidth influences the arrival time of inhibition during an FM sweep because a broader sideband will be encountered sooner. These findings show that similar spectrotemporal filters can be created by different mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex of the pallid bat.

Frequency-modulated (FM) sweeps are common in vocalizations, including human speech. Selectivity for FM sweep rate and direction is present in the auditory cortex of many species. The present study sought to determine the mechanisms underlying FM sweep selectivity in the auditory cortex of pallid bats. In the pallid bat inferior colliculus (IC), two mechanisms underlie selectivity for FM sweep ...

متن کامل

1 Facilitatory Mechanisms Shape Selectivity for the Rate and Direction of FM Sweeps 2 in the Inferior Colliculus of the Pallid Bat 3 4 5

Facilitatory Mechanisms Shape Selectivity for the Rate and Direction of FM Sweeps 2 in the Inferior Colliculus of the Pallid Bat 3 4 5 Anthony J. Williams and Zoltan M. Fuzessery 6 Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071 7 8 9 Running Head: Facilitation and FM Sweep Selectivity in the IC 10

متن کامل

Facilitatory mechanisms shape selectivity for the rate and direction of FM sweeps in the inferior colliculus of the pallid bat.

The inferior colliculus (IC) of the pallid bat has a large percentage of neurons that respond selectively to the rate and direction of the bat's echolocation pulse, a downward FM sweep. Three underlying mechanisms have been previously described. Here we describe a fourth mechanism, facilitation, that shapes selectivity for both sweep rate and direction. The neurons studied are termed FM special...

متن کامل

GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.

In the pallid bat auditory cortex and inferior colliculus (IC), the majority of neurons tuned in the echolocation range is selective for the direction and rate of frequency-modulated (FM) sweeps used in echolocation. Such selectivity is shaped mainly by spectrotemporal asymmetries in sideband inhibition. An early-arriving, low-frequency inhibition (LFI) shapes direction selectivity. A delayed, ...

متن کامل

Multiple mechanisms shape FM sweep rate selectivity: complementary or redundant?

Auditory neurons in the inferior colliculus (IC) of the pallid bat have highly rate selective responses to downward frequency modulated (FM) sweeps attributable to the spectrotemporal pattern of their echolocation call (a brief FM pulse). Several mechanisms are known to shape FM rate selectivity within the pallid bat IC. Here we explore how two mechanisms, stimulus duration and high-frequency i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2006